Generalization Error Bounds for Kernel Matrix Completion and Extrapolation
نویسندگان
چکیده
منابع مشابه
Accurate Error Bounds for the Eigenvalues of the Kernel Matrix
The eigenvalues of the kernel matrix play an important role in a number of kernel methods, in particular, in kernel principal component analysis. It is well known that the eigenvalues of the kernel matrix converge as the number of samples tends to infinity. We derive probabilistic finite sample size bounds on the approximation error of individual eigenvalues which have the important property th...
متن کاملMutual Kernel Matrix Completion
With the huge influx of various data nowadays, extracting knowledge from them has become an interesting but tedious task among data scientists, particularly when the data come in heterogeneous form and have missing information. Many data completion techniques had been introduced, especially in the advent of kernel methods. However, among the many data completion techniques available in the lite...
متن کاملError-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion
We propose a general framework for reconstructing and denoising single entries of incomplete and noisy entries. We describe: effective algorithms for deciding if and entry can be reconstructed and, if so, for reconstructing and denoising it; and a priori bounds on the error of each entry, individually. In the noiseless case our algorithm is exact. For rank-one matrices, the new algorithm is fas...
متن کاملGeneralization Bounds for Learning the Kernel Problem
In this paper we develop a novel probabilistic generalization bound for learning the kernel problem. First, we show that the generalization analysis of the regularized kernel learning system reduces to investigation of the suprema of the Rademacher chaos process of order two over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rad...
متن کاملGeneralization Bounds for Learning the Kernel -
In this paper we develop a novel probabilistic generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning algorithms reduces to investigation of the suprema of the Rademacher chaos process of order two over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2020
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2020.2970306